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Warm-up

Consider an algebra (that is, a linear space equipped with additional
multiplication) of n × n matrices over a given field F. We say that a finite
set of matrices S generates it if any element of the algebra can be
represented as a linear combination of some products of elements from S.

Can you think of a generating set of the following size or below?

n2;

2n;

2.

How long are the products which we need to generate the algebra? (1, 2,
2n-2 respectively)
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The basics

Let A be a finite dimensional F-algebra and S = {a1, . . . , aj} a generating
set of A.

Word of length m in S
ai1 · . . . · aim

If A is unital, we consider 1A to be a word of length 0.

Length of S
Sm = {words in S of length ≤ m}, Lm(S) = ⟨Sm⟩
L(S) =

∞⋃
m=0

Lm(S)

l(S) = min{k ∈ Z+ : Lk(S) = A}

Length of A
l(A) = max{l(S) : L(S) = A}
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Historical framework

The problem of the associative algebra length computation was first
discussed in 1959-1960 works of Spencer and Rivlin for the algebra of
3× 3 matrices, and the case of n × n matrices remains open.

Theorem (Paz, 1984)

l(Mn(F)) ≤
⌈
n2 + 2

3

⌉
.

Theorem (Pappacena, 1997)

Let A be an associative F-algebra, m(A) the maximal degree of minimal
polynomial of its elements and

f (d ,m) = m

√
2d

m − 1
+

1

4
+

m

2
− 2.

Then l(A) < f (dimA,m(A)).
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Two flavours: bounds

If we consider a class of algebras, it is a natural question to determine the
common bounds for the lengths of its members.

Proposition

Let A be an associative F-algebra. Then l(A) ≤ dimA.

It follows from the fact that for any generating set S if the sequence
{dimLn(S)}∞n=1 stabilises, it stabilises forever.

Theorem (Guterman, K., 2020)

Let A be a not necessarily associative F-algebra. Then l(A) ≤ 2dimA−1.

This fact requires a more involved proof.
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Tools for bounds

Irreducible word

w of length k in S, such that ∀h : 0 ≤ h < k w /∈ Lh(S)

An irreducible word of length 2 or greater is a product of irreducible words
of positive length.

Characteristic sequence of S
A monotonically non-decreasing sequence of non-negative integers
(m1, . . . ,mN), constructed by the following rules:

If s0 = dimL0(S) = 1, we set m1 = 0. Otherwise s0 = 0;

Denoting s1 = dimL1(S)− dimL0(S), we define
ms0+1 = . . . = ms0+s1 = 1;

Let the elements m1, . . . ,mr be already defined and the sets
L0(S), . . . ,Lk−1(S) considered for some r > 0, k > 1. Denote
sk = dimLk(S)− dimLk−1(S) and define mr+1 = . . . = mr+sk = k .
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Useful properties

Connection to irreducible words

There exists a finite series of sets E1, . . . ,El(S), satisfying the following
properties:

Eh ⊆ Eh+1, h = 1, . . . , l(S)− 1;

Eh is a basis of Lh(S);
Eh consists of irreducible words in S of lengths 0, . . . , h, with exactly
sj words of length j .

Putting it together

For any mh there is an irreducible word of the length mh;

If there is an irreducible word of length k, then k is in the sequence;

N = dimA and mN = l(S);
Every mh is a sum of two previous elements, in particular mh ≤ 2h−1.
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Special cases of non-associative algebras

name defining properties length bound

gen. non-assoc. - 2dimA−1

quadratic x2 + t(x)x + n(x) = 0
dimAth

Fibonacci number

Lie
xy = −yx ,

(xy)z + (yz)x + (zx)y = 0
dimA(−1)

Malcev
xy = −yx , (xy)(xz) =

((xy)z)x) + ((yz)x)x + ((zx)x)y
dimA

Jordan xy = yx , (xx)(xy) = x((xx)y) dimA

A particular direction of the current studies in the area is investigating the
classes of slowly growing length, that is those which have dimA as an
upper bound.
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Two flavours: computation

Specific case

The length of 2× 2 matrix algebra over any field F is 2.

Covering entire class

The length of a unital one-generated associative algebra A is dimA− 1.

Proposition (Guterman, K., 2017)

For quaternions and octonions viewed as algebras over the field of the reals
R the lengths are 2 and 3.
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Group algebras

Definition

Let G be a finite group and F a field. By the group algebra FG we
understand a linear space over F with basis corresponding to elements of
G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar
“length” of groups.

Theorem (Guterman, Markova, Khrystik, 2022)

Let G be a finite abelian group, char(F) ∤ |G | and |F| > |G |. Then the
group algebra FG is 1-generated and, consequently, l(FG ) = |G | − 1.

Theorem (Guterman, Markova, 2019)

Let S3 be the symmetric group on 3 elements. Then for any field F it
holds that l(FS3) = 3.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 10 / 18



Group algebras

Definition

Let G be a finite group and F a field. By the group algebra FG we
understand a linear space over F with basis corresponding to elements of
G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar
“length” of groups.

Theorem (Guterman, Markova, Khrystik, 2022)

Let G be a finite abelian group, char(F) ∤ |G | and |F| > |G |. Then the
group algebra FG is 1-generated and, consequently, l(FG ) = |G | − 1.

Theorem (Guterman, Markova, 2019)

Let S3 be the symmetric group on 3 elements. Then for any field F it
holds that l(FS3) = 3.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 10 / 18



Group algebras

Definition

Let G be a finite group and F a field. By the group algebra FG we
understand a linear space over F with basis corresponding to elements of
G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar
“length” of groups.

Theorem (Guterman, Markova, Khrystik, 2022)

Let G be a finite abelian group, char(F) ∤ |G | and |F| > |G |. Then the
group algebra FG is 1-generated and, consequently, l(FG ) = |G | − 1.

Theorem (Guterman, Markova, 2019)

Let S3 be the symmetric group on 3 elements. Then for any field F it
holds that l(FS3) = 3.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 10 / 18



Group algebras

Definition

Let G be a finite group and F a field. By the group algebra FG we
understand a linear space over F with basis corresponding to elements of
G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar
“length” of groups.

Theorem (Guterman, Markova, Khrystik, 2022)

Let G be a finite abelian group, char(F) ∤ |G | and |F| > |G |. Then the
group algebra FG is 1-generated and, consequently, l(FG ) = |G | − 1.

Theorem (Guterman, Markova, 2019)

Let S3 be the symmetric group on 3 elements. Then for any field F it
holds that l(FS3) = 3.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 10 / 18



Semigroups

Definition

A pair (S , ·) consisting of a set S and a binary operation · : S × S → S
such that for any elements x , y , z ∈ S it holds that (x · y) · z = x · (y · z).

Semigroup algebras are defined similarly to the group case.

Inverse semigroups

Special class of structures defined by ∀x∃!y : xyx = x , yxy = y . The
element y is usually denoted x−1.

Green’s relation R
Two elements x , y of a semigroup S are R-related if there exist x ′, y ′ ∈ S
such that xx ′ = y and yy ′ = x , or if x = y . We denote it by xRy . A
semigroup S is called R-trivial if for any x , y in S from xRy it follows
that x = y .
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Rukolaine construction

Let S be an inverse semigroup.

σ-map for idempotents

For an idempotent e ∈ S consider the finite set {e1, . . . , en} of its maximal
pre-idempotents. Define σ(e) = e +

∑
1≤<i1<...<ij≤n

(−1)jei1 . . . eij .

For distinct e and f the product of σ(e) and σ(f ) is zero.

Corresponding map for all elements

ā = σ(aa−1)aσ(a−1a).

Properties (Rukolaine, 1984)

Let a, b ∈ S . If aa−1 ̸= b−1b, then āb̄ = 0. If aa−1 = b−1b, then āb̄ = ab.
The algebra A of the finite inverse semigroup S has a basis consisting of
elements ā = σ(aa−1)aσ(a−1a), where a ∈ S , a ̸= 0.
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Lengths of inverse semigroup algebras

Proposition (K., 2024)

Let S be an abelian finite inverse semigroup such that charF does not
divide the order of any subgroup of S and |F| > |S |. Then the (contracted
if S contains a zero) semigroup algebra A of S is 1-generated and,
consequently, l(A) = |S | − 1 if S does not contain zero and
l(A) = |S | − 2 otherwise.

We can also consider non-abelian inverse semigroups. Take for example In,
the inverse semigroup of all partial bijections on n elements. Fix a field F
and let An be the contracted semigroup algebra of In over F.

Proposition (K., 2024)

The length of the contracted semigroup algebra of I2 is 3.
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Tsetlin libraries Tn

Definition

A a semigroup consisting of non-empty words with no repeating letters in
{1, . . . , n} of length n or less with the operation defined as u · v = (uv)∧,
where u, v ∈ Tn, uv is a concatenation of u and v and
∧ : {1, . . . , n}∗ → {1, . . . , n}∗ is an operation which sends a given word w
to a word w∧ with all the occurrences of any given letter after the first
one removed.

For example, in T4 we have (13) · (234) = (1324).
We denote by T 1

n the semigroup resulting from adjoining an external
identity to Tn and we write C (w) for the elements of 1, . . . , n contained in
w ∈ T 1

n .

Remark

For any n ≥ 1 the semigroups Tn and T 1
n are R-trivial.
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Representation tools

One can view the multiplication by an element a ∈ CTn on the left as a
linear operator on CT 1

n (i.e. consider regular representation of CT 1
n ).

Application of theorem (Steinberg, 2006)

Let a =
∑

w∈Tn

αww be an element of CTn. Its eigenvalues are given by

λX =
∑

w |C(w)⊆X

αw , where X is a subset of {1, . . . , n}.

Application of propositions (Ayyer, Schilling, Steinberg, Thiéry, 2015)

If these eigenvalues are distinct, the corresponding matrix is diagonalisable.
Additionally, for m ∈ T 1

n it holds that

m(a− λX ) =
∑

w |C(w )̸⊆C(m)

αwmw .
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Combitnatorial tools

Definition

Let A be an F-algebra. For x ∈ A minimal multiplicative degree of x ,
denoted m(x) is the minimal number m such that xm ∈ Lm−1({x}) while
xm−1 ̸∈ Lm−2({x}). We also define the multiplicative degree of A to be
m(A) = max(m(x), x ∈ A).

If A has an identity, m(x) coincides with the degree of the minimal
polynomial of x .

Proposition (K., 2024)

If l(A) > m(A), then dimA ≥ 3l(A)− 4 + dimL0.
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Results for Tsetlin libraries

Proposition (K., 2024)

The multiplicative degree of CTn is 2n.

Proposition (K., 2024)

l(CT2) = 3, l(CT3) = 7.
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Thank you!
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