Lengths of algebras: introduction

Dmitry Kudryavtsev

University of York

Semigroup Seminar, 08.10.25

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Can you think of a generating set of the following size or below?

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Can you think of a generating set of the following size or below?

• n^2 ;

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Can you think of a generating set of the following size or below?

- \bullet n^2 ;
- 2n;

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Can you think of a generating set of the following size or below?

- \bullet n^2 ;
- 2n;
- **2**.

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Can you think of a generating set of the following size or below?

- \circ n^2 ;
- 2*n*;
- 2.

How long are the products which we need to generate the algebra?

Consider an algebra (that is, a linear space equipped with additional multiplication) of $n \times n$ matrices over a given field \mathbb{F} . We say that a finite set of matrices \mathcal{S} generates it if any element of the algebra can be represented as a linear combination of some products of elements from \mathcal{S} .

Can you think of a generating set of the following size or below?

- \bullet n^2 ;
- 2*n*;
- 2.

How long are the products which we need to generate the algebra? (1, 2, 2n-2 respectively)

Let \mathcal{A} be a finite dimensional \mathbb{F} -algebra and $\mathcal{S} = \{a_1, \dots, a_j\}$ a generating set of \mathcal{A} .

D. Kudryavtsev (UoY)

Let \mathcal{A} be a finite dimensional \mathbb{F} -algebra and $\mathcal{S} = \{a_1, \dots, a_j\}$ a generating set of \mathcal{A} .

Word of length m in S

 $a_{i_1}\cdot\ldots\cdot a_{i_m}$

Let \mathcal{A} be a finite dimensional \mathbb{F} -algebra and $\mathcal{S} = \{a_1, \dots, a_j\}$ a generating set of \mathcal{A} .

Word of length m in S

$$a_{i_1}\cdot\ldots\cdot a_{i_m}$$

If A is unital, we consider 1_A to be a word of length 0.

Let \mathcal{A} be a finite dimensional \mathbb{F} -algebra and $\mathcal{S} = \{a_1, \dots, a_j\}$ a generating set of \mathcal{A} .

Word of length m in S

$$a_{i_1}\cdot\ldots\cdot a_{i_m}$$

If A is unital, we consider 1_A to be a word of length 0.

Length of ${\cal S}$

$$\mathcal{S}^m = \{ \text{words in } \mathcal{S} \text{ of length} \leq m \}, \ \mathcal{L}_m(\mathcal{S}) = \langle \mathcal{S}^m \rangle$$

Let $\mathcal A$ be a finite dimensional $\mathbb F$ -algebra and $\mathcal S=\{a_1,\dots,a_j\}$ a generating set of $\mathcal A$.

Word of length m in S

$$a_{i_1}\cdot\ldots\cdot a_{i_m}$$

If A is unital, we consider 1_A to be a word of length 0.

Length of ${\cal S}$

$$S^m = \{ \text{words in } S \text{ of length } \leq m \}, \ \mathcal{L}_m(S) = \langle S^m \rangle$$

$$\mathcal{L}(\mathcal{S}) = \bigcup_{m=0}^{\infty} \mathcal{L}_m(\mathcal{S})$$

Let $\mathcal A$ be a finite dimensional $\mathbb F$ -algebra and $\mathcal S=\{a_1,\dots,a_j\}$ a generating set of $\mathcal A$.

Word of length m in S

$$a_{i_1} \cdot \ldots \cdot a_{i_m}$$

If A is unital, we consider 1_A to be a word of length 0.

Length of ${\cal S}$

$$\mathcal{S}^m = \{ \text{words in } \mathcal{S} \text{ of length} \leq m \}, \ \mathcal{L}_m(\mathcal{S}) = \langle \mathcal{S}^m \rangle$$

$$\mathcal{L}(\mathcal{S}) = \bigcup_{m=0}^{\infty} \mathcal{L}_m(\mathcal{S})$$

$$I(S) = \min_{m=0}^{m=0} \{k \in \mathbb{Z}_+ : \mathcal{L}_k(S) = A\}$$

D. Kudryavtsev (UoY)

Let \mathcal{A} be a finite dimensional \mathbb{F} -algebra and $\mathcal{S} = \{a_1, \dots, a_j\}$ a generating set of \mathcal{A} .

Word of length m in S

$$a_{i_1}\cdot\ldots\cdot a_{i_m}$$

If A is unital, we consider 1_A to be a word of length 0.

Length of ${\mathcal S}$

$$\mathcal{S}^m = \{ \text{words in } \mathcal{S} \text{ of length} \leq m \}, \ \mathcal{L}_m(\mathcal{S}) = \langle \mathcal{S}^m \rangle$$

$$\mathcal{L}(\mathcal{S}) = \bigcup_{m=0}^{\infty} \mathcal{L}_m(\mathcal{S})$$

$$I(S) = \min_{m=0}^{m=0} \{k \in \mathbb{Z}_+ : \mathcal{L}_k(S) = A\}$$

Length of A

$$I(A) = \max\{I(S) : \mathcal{L}(S) = A\}$$

3/18

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25

Historical framework

The problem of the associative algebra length computation was first discussed in 1959-1960 works of Spencer and Rivlin for the algebra of 3×3 matrices, and the case of $n \times n$ matrices remains open.

Historical framework

The problem of the associative algebra length computation was first discussed in 1959-1960 works of Spencer and Rivlin for the algebra of 3×3 matrices, and the case of $n \times n$ matrices remains open.

Theorem (Paz, 1984)

$$I(M_n(\mathbb{F})) \leq \left\lceil \frac{n^2+2}{3} \right\rceil.$$

D. Kudryavtsev (UoY)

Historical framework

The problem of the associative algebra length computation was first discussed in 1959-1960 works of Spencer and Rivlin for the algebra of 3×3 matrices, and the case of $n \times n$ matrices remains open.

Theorem (Paz, 1984)

$$I(M_n(\mathbb{F})) \leq \left\lceil \frac{n^2+2}{3} \right\rceil.$$

Theorem (Pappacena, 1997)

Let $\mathcal A$ be an associative $\mathbb F$ -algebra, $m(\mathcal A)$ the maximal degree of minimal polynomial of its elements and

$$f(d,m) = m\sqrt{\frac{2d}{m-1} + \frac{1}{4}} + \frac{m}{2} - 2.$$

Then $I(A) < f(\dim A, m(A))$.

If we consider a class of algebras, it is a natural question to determine the common bounds for the lengths of its members.

If we consider a class of algebras, it is a natural question to determine the common bounds for the lengths of its members.

Proposition

Let \mathcal{A} be an associative \mathbb{F} -algebra. Then $I(\mathcal{A}) \leq \dim \mathcal{A}$.

If we consider a class of algebras, it is a natural question to determine the common bounds for the lengths of its members.

Proposition

Let \mathcal{A} be an associative \mathbb{F} -algebra. Then $I(\mathcal{A}) \leq \dim \mathcal{A}$.

It follows from the fact that for any generating set S if the sequence $\{\dim \mathcal{L}_n(S)\}_{n=1}^{\infty}$ stabilises, it stabilises forever.

If we consider a class of algebras, it is a natural question to determine the common bounds for the lengths of its members.

Proposition

Let \mathcal{A} be an associative \mathbb{F} -algebra. Then $I(\mathcal{A}) \leq \dim \mathcal{A}$.

It follows from the fact that for any generating set S if the sequence $\{\dim \mathcal{L}_n(S)\}_{n=1}^{\infty}$ stabilises, it stabilises forever.

Theorem (Guterman, K., 2020)

Let $\mathcal A$ be a not necessarily associative $\mathbb F$ -algebra. Then $I(\mathcal A) \leq 2^{\dim \mathcal A - 1}$.

If we consider a class of algebras, it is a natural question to determine the common bounds for the lengths of its members.

Proposition

Let \mathcal{A} be an associative \mathbb{F} -algebra. Then $I(\mathcal{A}) \leq \dim \mathcal{A}$.

It follows from the fact that for any generating set S if the sequence $\{\dim \mathcal{L}_n(S)\}_{n=1}^{\infty}$ stabilises, it stabilises forever.

Theorem (Guterman, K., 2020)

Let \mathcal{A} be a not necessarily associative \mathbb{F} -algebra. Then $I(\mathcal{A}) \leq 2^{\dim \mathcal{A} - 1}$.

This fact requires a more involved proof.

D. Kudryavtsev (UoY)

Irreducible word

w of length k in S, such that $\forall h : 0 \leq h < k$ $w \notin \mathcal{L}_h(S)$

Irreducible word

w of length k in S, such that $\forall h : 0 \leq h < k$ $w \notin \mathcal{L}_h(S)$

An irreducible word of length 2 or greater is a product of irreducible words of positive length.

Irreducible word

w of length k in S, such that $\forall h : 0 \leq h < k$ $w \notin \mathcal{L}_h(S)$

An irreducible word of length 2 or greater is a product of irreducible words of positive length.

Characteristic sequence of ${\mathcal S}$

A monotonically non-decreasing sequence of non-negative integers (m_1, \ldots, m_N) , constructed by the following rules:

◆ロト ◆個ト ◆差ト ◆差ト 差 めな(

6/18

Irreducible word

w of length k in S, such that $\forall h : 0 \leq h < k$ $w \notin \mathcal{L}_h(S)$

An irreducible word of length 2 or greater is a product of irreducible words of positive length.

Characteristic sequence of ${\mathcal S}$

A monotonically non-decreasing sequence of non-negative integers (m_1, \ldots, m_N) , constructed by the following rules:

• If $s_0 = \dim \mathcal{L}_0(\mathcal{S}) = 1$, we set $m_1 = 0$. Otherwise $s_0 = 0$;

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 6/18

Irreducible word

w of length k in S, such that $\forall h : 0 \leq h < k$ $w \notin \mathcal{L}_h(S)$

An irreducible word of length 2 or greater is a product of irreducible words of positive length.

Characteristic sequence of ${\mathcal S}$

A monotonically non-decreasing sequence of non-negative integers (m_1, \ldots, m_N) , constructed by the following rules:

- If $s_0 = \dim \mathcal{L}_0(\mathcal{S}) = 1$, we set $m_1 = 0$. Otherwise $s_0 = 0$;
- Denoting $s_1 = \dim \mathcal{L}_1(\mathcal{S}) \dim \mathcal{L}_0(\mathcal{S})$, we define $m_{s_0+1} = \ldots = m_{s_0+s_1} = 1$;

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 6/18

Irreducible word

w of length k in S, such that $\forall h : 0 \leq h < k$ $w \notin \mathcal{L}_h(S)$

An irreducible word of length 2 or greater is a product of irreducible words of positive length.

Characteristic sequence of ${\mathcal S}$

A monotonically non-decreasing sequence of non-negative integers (m_1, \ldots, m_N) , constructed by the following rules:

- If $s_0 = \dim \mathcal{L}_0(\mathcal{S}) = 1$, we set $m_1 = 0$. Otherwise $s_0 = 0$;
- Denoting $s_1 = \dim \mathcal{L}_1(\mathcal{S}) \dim \mathcal{L}_0(\mathcal{S})$, we define $m_{s_0+1} = \ldots = m_{s_0+s_1} = 1$;
- Let the elements m_1, \ldots, m_r be already defined and the sets $\mathcal{L}_0(\mathcal{S}), \ldots, \mathcal{L}_{k-1}(\mathcal{S})$ considered for some r > 0, k > 1. Denote $s_k = \dim \mathcal{L}_k(\mathcal{S}) \dim \mathcal{L}_{k-1}(\mathcal{S})$ and define $m_{r+1} = \ldots = m_{r+s_k} = k$.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 6 / 18

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{I(S)}$, satisfying the following properties:

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{I(S)}$, satisfying the following properties:

•
$$E_h \subseteq E_{h+1}, h = 1, ..., l(S) - 1;$$

7 / 18

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{l(S)}$, satisfying the following properties:

- $E_h \subseteq E_{h+1}, h = 1, ..., l(S) 1;$
- E_h is a basis of $\mathcal{L}_h(\mathcal{S})$;

7 / 18

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{l(S)}$, satisfying the following properties:

- $E_h \subseteq E_{h+1}, h = 1, ..., l(S) 1;$
- E_h is a basis of $\mathcal{L}_h(\mathcal{S})$;
- E_h consists of irreducible words in S of lengths $0, \ldots, h$, with exactly s_j words of length j.

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{l(S)}$, satisfying the following properties:

- $E_h \subseteq E_{h+1}$, h = 1, ..., l(S) 1;
- E_h is a basis of $\mathcal{L}_h(\mathcal{S})$;
- E_h consists of irreducible words in S of lengths $0, \ldots, h$, with exactly s_j words of length j.

Putting it together

• For any m_h there is an irreducible word of the length m_h ;

7 / 18

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{l(S)}$, satisfying the following properties:

- $E_h \subseteq E_{h+1}$, h = 1, ..., l(S) 1;
- E_h is a basis of $\mathcal{L}_h(\mathcal{S})$;
- E_h consists of irreducible words in S of lengths $0, \ldots, h$, with exactly s_j words of length j.

Putting it together

- For any m_h there is an irreducible word of the length m_h ;
- If there is an irreducible word of length k, then k is in the sequence;

7 / 18

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{l(S)}$, satisfying the following properties:

- $E_h \subseteq E_{h+1}$, h = 1, ..., l(S) 1;
- E_h is a basis of $\mathcal{L}_h(\mathcal{S})$;
- E_h consists of irreducible words in S of lengths $0, \ldots, h$, with exactly s_j words of length j.

Putting it together

- For any m_h there is an irreducible word of the length m_h ;
- If there is an irreducible word of length k, then k is in the sequence;
- $N = \dim A$ and $m_N = I(S)$;

4 D > 4 A > 4 B > 4 B > B 904

Useful properties

Connection to irreducible words

There exists a finite series of sets $E_1, \ldots, E_{I(S)}$, satisfying the following properties:

- $E_h \subseteq E_{h+1}, h = 1, ..., l(S) 1$;
- E_h is a basis of $\mathcal{L}_h(\mathcal{S})$;
- E_h consists of irreducible words in S of lengths $0, \ldots, h$, with exactly s; words of length j.

Putting it together

- For any m_h there is an irreducible word of the length m_h ;
- If there is an irreducible word of length k, then k is in the sequence;
- $N = \dim \mathcal{A}$ and $m_N = I(\mathcal{S})$;
- Every m_h is a sum of two previous elements, in particular $m_h \leq 2^{h-1}$.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 7 / 18

name	defining properties	length bound
gen. non-assoc.	-	$2^{\dim \mathcal{A}-1}$

name	defining properties	length bound
gen. non-assoc.	-	$2^{\dim \mathcal{A}-1}$
quadratic	$x^2 + t(x)x + n(x) = 0$	$\dim \mathcal{A}$ th Fibonacci number

name	defining properties	length bound
gen. non-assoc.	-	$2^{\dim \mathcal{A}-1}$
quadratic	$x^2 + t(x)x + n(x) = 0$	$\dim \mathcal{A}$ th Fibonacci number
Lie	xy = -yx, (xy)z + (yz)x + (zx)y = 0	$\dim \mathcal{A}(-1)$

name	defining properties	length bound
gen. non-assoc.	-	$2^{\dim \mathcal{A}-1}$
quadratic	$x^2 + t(x)x + n(x) = 0$	$\dim \mathcal{A}$ th
		Fibonacci number
Lie	xy = -yx, (xy)z + (yz)x + (zx)y = 0	$\dim \mathcal{A}(-1)$
Malcev	xy = -yx, (xy)(xz) = ((xy)z)x) + ((yz)x)x + ((zx)x)y	$\dim \mathcal{A}$

name	defining properties	length bound
gen. non-assoc.	-	$2^{\dim \mathcal{A}-1}$
quadratic	$x^2 + t(x)x + n(x) = 0$	$\dim \mathcal{A}$ th
		Fibonacci number
Lie	xy = -yx,	$\dim \mathcal{A}(-1)$
	(xy)z + (yz)x + (zx)y = 0	
Malcev	xy = -yx, (xy)(xz) =	$\dim \mathcal{A}$
	((xy)z)x) + ((yz)x)x + ((zx)x)y	uiii A
Jordan	xy = yx, (xx)(xy) = x((xx)y)	$\dim \mathcal{A}$

name	defining properties	length bound
gen. non-assoc.	-	$2^{\dim \mathcal{A}-1}$
quadratic	$x^2 + t(x)x + n(x) = 0$	$\dim \mathcal{A}$ th
		Fibonacci number
Lie	xy = -yx,	$\dim \mathcal{A}(-1)$
	(xy)z + (yz)x + (zx)y = 0	
Malcev	xy = -yx, (xy)(xz) =	$\dim \mathcal{A}$
	((xy)z)x) + ((yz)x)x + ((zx)x)y	um A
Jordan	xy = yx, (xx)(xy) = x((xx)y)	$\dim \mathcal{A}$

A particular direction of the current studies in the area is investigating the classes of slowly growing length, that is those which have $\dim \mathcal{A}$ as an upper bound.

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

Two flavours: computation

Specific case

The length of 2×2 matrix algebra over any field $\mathbb F$ is 2.

Two flavours: computation

Specific case

The length of 2×2 matrix algebra over any field \mathbb{F} is 2.

Covering entire class

The length of a unital one-generated associative algebra $\mathcal A$ is $\dim \mathcal A - 1$.

Two flavours: computation

Specific case

The length of 2×2 matrix algebra over any field \mathbb{F} is 2.

Covering entire class

The length of a unital one-generated associative algebra ${\cal A}$ is $\dim {\cal A}-1$.

Proposition (Guterman, K., 2017)

For quaternions and octonions viewed as algebras over the field of the reals $\mathbb R$ the lengths are 2 and 3.

Definition

Let G be a finite group and \mathbb{F} a field. By the *group algebra* $\mathbb{F}G$ we understand a linear space over F with basis corresponding to elements of G and multiplication on this basis inherited from the respective group.

Definition

Let G be a finite group and \mathbb{F} a field. By the *group algebra* $\mathbb{F}G$ we understand a linear space over F with basis corresponding to elements of G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar "length" of groups.

Definition

Let G be a finite group and \mathbb{F} a field. By the *group algebra* $\mathbb{F}G$ we understand a linear space over F with basis corresponding to elements of G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar "length" of groups.

Theorem (Guterman, Markova, Khrystik, 2022)

Let G be a finite abelian group, $\operatorname{char}(\mathbb{F}) \nmid |G|$ and $|\mathbb{F}| > |G|$. Then the group algebra $\mathbb{F}G$ is 1-generated and, consequently, $I(\mathbb{F}G) = |G| - 1$.

Definition

Let G be a finite group and \mathbb{F} a field. By the *group algebra* $\mathbb{F}G$ we understand a linear space over F with basis corresponding to elements of G and multiplication on this basis inherited from the respective group.

The length of group algebras is not directly connected to the similar "length" of groups.

Theorem (Guterman, Markova, Khrystik, 2022)

Let G be a finite abelian group, $\operatorname{char}(\mathbb{F}) \nmid |G|$ and $|\mathbb{F}| > |G|$. Then the group algebra $\mathbb{F}G$ is 1-generated and, consequently, $I(\mathbb{F}G) = |G| - 1$.

Theorem (Guterman, Markova, 2019)

Let S_3 be the symmetric group on 3 elements. Then for any field $\mathbb F$ it holds that $I(\mathbb F S_3)=3$.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 10 / 18

Definition

A pair (S, \cdot) consisting of a set S and a binary operation $\cdot : S \times S \to S$ such that for any elements $x, y, z \in S$ it holds that $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

11 / 18

Definition

A pair (S, \cdot) consisting of a set S and a binary operation $\cdot : S \times S \to S$ such that for any elements $x, y, z \in S$ it holds that $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Semigroup algebras are defined similarly to the group case.

Definition

A pair (S, \cdot) consisting of a set S and a binary operation $\cdot : S \times S \to S$ such that for any elements $x, y, z \in S$ it holds that $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Semigroup algebras are defined similarly to the group case.

Inverse semigroups

Special class of structures defined by $\forall x \exists ! y : xyx = x, yxy = y$. The element y is usually denoted x^{-1} .

Definition

A pair (S, \cdot) consisting of a set S and a binary operation $\cdot : S \times S \to S$ such that for any elements $x, y, z \in S$ it holds that $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Semigroup algebras are defined similarly to the group case.

Inverse semigroups

Special class of structures defined by $\forall x \exists ! y : xyx = x, yxy = y$. The element y is usually denoted x^{-1} .

Green's relation ${\cal R}$

Two elements x, y of a semigroup S are \mathcal{R} -related if there exist $x', y' \in S$ such that xx' = y and yy' = x, or if x = y. We denote it by $x\mathcal{R}y$. A semigroup S is called \mathcal{R} -trivial if for any x, y in S from $x\mathcal{R}y$ it follows that x = y.

Let S be an inverse semigroup.

σ -map for idempotents

For an idempotent $e \in S$ consider the finite set $\{e_1, \ldots, e_n\}$ of its maximal pre-idempotents. Define $\sigma(e) = e + \sum_{1 \leq < i_1 < \ldots < i_j \leq n} (-1)^j e_{i_1} \ldots e_{i_j}$.

Let S be an inverse semigroup.

σ -map for idempotents

For an idempotent $e \in S$ consider the finite set $\{e_1, \ldots, e_n\}$ of its maximal pre-idempotents. Define $\sigma(e) = e + \sum\limits_{1 \leq < i_1 < \ldots < i_j \leq n} (-1)^j e_{i_1} \ldots e_{i_j}$.

For distinct e and f the product of $\sigma(e)$ and $\sigma(f)$ is zero.

D. Kudryavtsev (UoY)

Let S be an inverse semigroup.

σ -map for idempotents

For an idempotent $e \in S$ consider the finite set $\{e_1, \ldots, e_n\}$ of its maximal pre-idempotents. Define $\sigma(e) = e + \sum\limits_{1 \leq < i_1 < \ldots < i_j \leq n} (-1)^j e_{i_1} \ldots e_{i_j}$.

For distinct e and f the product of $\sigma(e)$ and $\sigma(f)$ is zero.

Corresponding map for all elements

$$\bar{a} = \sigma(aa^{-1})a\sigma(a^{-1}a).$$

Let S be an inverse semigroup.

σ -map for idempotents

For an idempotent $e \in S$ consider the finite set $\{e_1, \ldots, e_n\}$ of its maximal pre-idempotents. Define $\sigma(e) = e + \sum_{1 \le \langle i_1 < \ldots < i_j \le n} (-1)^j e_{i_1} \ldots e_{i_j}$.

For distinct e and f the product of $\sigma(e)$ and $\sigma(f)$ is zero.

Corresponding map for all elements

$$\bar{a} = \sigma(aa^{-1})a\sigma(a^{-1}a).$$

Properties (Rukolaine, 1984)

Let $a,b\in S$. If $aa^{-1}\neq b^{-1}b$, then $\bar{a}\bar{b}=0$. If $aa^{-1}=b^{-1}b$, then $\bar{a}\bar{b}=\overline{ab}$. The algebra $\mathcal A$ of the finite inverse semigroup S has a basis consisting of elements $\bar{a}=\sigma(aa^{-1})a\sigma(a^{-1}a)$, where $a\in S, a\neq 0$.

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 12 / 18

Lengths of inverse semigroup algebras

Proposition (K., 2024)

Let S be an abelian finite inverse semigroup such that $\operatorname{char} \mathbb{F}$ does not divide the order of any subgroup of S and $|\mathbb{F}| > |S|$. Then the (contracted if S contains a zero) semigroup algebra \mathcal{A} of S is 1-generated and, consequently, $I(\mathcal{A}) = |S| - 1$ if S does not contain zero and $I(\mathcal{A}) = |S| - 2$ otherwise.

Lengths of inverse semigroup algebras

Proposition (K., 2024)

Let S be an abelian finite inverse semigroup such that $\operatorname{char} \mathbb{F}$ does not divide the order of any subgroup of S and $|\mathbb{F}| > |S|$. Then the (contracted if S contains a zero) semigroup algebra \mathcal{A} of S is 1-generated and, consequently, $I(\mathcal{A}) = |S| - 1$ if S does not contain zero and $I(\mathcal{A}) = |S| - 2$ otherwise.

We can also consider non-abelian inverse semigroups. Take for example I_n , the inverse semigroup of all partial bijections on n elements. Fix a field \mathbb{F} and let \mathcal{A}_n be the contracted semigroup algebra of I_n over \mathbb{F} .

13 / 18

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25

Lengths of inverse semigroup algebras

Proposition (K., 2024)

Let S be an abelian finite inverse semigroup such that $\operatorname{char} \mathbb{F}$ does not divide the order of any subgroup of S and $|\mathbb{F}| > |S|$. Then the (contracted if S contains a zero) semigroup algebra \mathcal{A} of S is 1-generated and, consequently, $I(\mathcal{A}) = |S| - 1$ if S does not contain zero and $I(\mathcal{A}) = |S| - 2$ otherwise.

We can also consider non-abelian inverse semigroups. Take for example I_n , the inverse semigroup of all partial bijections on n elements. Fix a field \mathbb{F} and let \mathcal{A}_n be the contracted semigroup algebra of I_n over \mathbb{F} .

Proposition (K., 2024)

The length of the contracted semigroup algebra of l_2 is 3.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

13 / 18

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25

Tsetlin libraries T_n

Definition

A a semigroup consisting of non-empty words with no repeating letters in $\{1,\ldots,n\}$ of length n or less with the operation defined as $u\cdot v=(uv)^{\wedge}$, where $u,v\in T_n$, uv is a concatenation of u and v with all the occurrences of any given letter after the first one removed.

Tsetlin libraries T_n

Definition

A a semigroup consisting of non-empty words with no repeating letters in $\{1,\ldots,n\}$ of length n or less with the operation defined as $u\cdot v=(uv)^{\wedge}$, where $u,v\in T_n$, uv is a concatenation of u and v with all the occurrences of any given letter after the first one removed.

For example, in T_4 we have $(13) \cdot (234) = (1324)$. We denote by T_n^1 the semigroup resulting from adjoining an external identity to T_n and we write C(w) for the elements of $1, \ldots, n$ contained in $w \in T_n^1$.

D. Kudryavtsev (UoY)

Tsetlin libraries T_n

Definition

A a semigroup consisting of non-empty words with no repeating letters in $\{1,\ldots,n\}$ of length n or less with the operation defined as $u\cdot v=(uv)^{\wedge}$, where $u,v\in T_n$, uv is a concatenation of u and v with all the occurrences of any given letter after the first one removed.

For example, in T_4 we have $(13) \cdot (234) = (1324)$. We denote by T_n^1 the semigroup resulting from adjoining an external identity to T_n and we write C(w) for the elements of $1, \ldots, n$ contained in $w \in T_n^1$.

Remark

For any $n \ge 1$ the semigroups T_n and T_n^1 are \mathcal{R} -trivial.

- 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ▶ 9 ℚ

D. Kudryavtsev (UoY) Lengths of algebras 08.10.25 14 / 18

Representation tools

One can view the multiplication by an element $a \in \mathbb{C}T_n$ on the left as a linear operator on $\mathbb{C}T_n^1$ (i.e. consider regular representation of $\mathbb{C}T_n^1$).

Representation tools

One can view the multiplication by an element $a \in \mathbb{C}T_n$ on the left as a linear operator on $\mathbb{C}T_n^1$ (i.e. consider regular representation of $\mathbb{C}T_n^1$).

Application of theorem (Steinberg, 2006)

Let $a = \sum_{w \in \mathcal{S}} \alpha_w w$ be an element of $\mathbb{C} T_n$. Its eigenvalues are given by

$$\lambda_X = \sum_{w \mid C(w) \subseteq X}^{n} \alpha_w$$
, where X is a subset of $\{1, \dots, n\}$.

Representation tools

One can view the multiplication by an element $a \in \mathbb{C}T_n$ on the left as a linear operator on $\mathbb{C}T_n^1$ (i.e. consider regular representation of $\mathbb{C}T_n^1$).

Application of theorem (Steinberg, 2006)

Let $a = \sum_{n \in \mathcal{T}} \alpha_w w$ be an element of $\mathbb{C} T_n$. Its eigenvalues are given by

$$\lambda_X = \sum_{w \mid C(w) \subseteq X}^{w \in T_n} \alpha_w$$
, where X is a subset of $\{1, \dots, n\}$.

Application of propositions (Ayyer, Schilling, Steinberg, Thiéry, 2015)

If these eigenvalues are distinct, the corresponding matrix is diagonalisable. Additionally, for $m \in \mathcal{T}_n^1$ it holds that

$$m(a - \lambda_X) = \sum_{w \mid C(w) \nsubseteq C(m)} \alpha_w mw.$$

→□▶→□▶→□▶→□▶ □ ○○○

Combitnatorial tools

Definition

Let \mathcal{A} be an \mathbb{F} -algebra. For $x \in \mathcal{A}$ minimal multiplicative degree of x, denoted m(x) is the minimal number m such that $x^m \in \mathcal{L}_{m-1}(\{x\})$ while $x^{m-1} \notin \mathcal{L}_{m-2}(\{x\})$. We also define the multiplicative degree of \mathcal{A} to be $m(\mathcal{A}) = \max(m(x), x \in \mathcal{A})$.

Combitnatorial tools

Definition

Let \mathcal{A} be an \mathbb{F} -algebra. For $x \in \mathcal{A}$ minimal multiplicative degree of x, denoted m(x) is the minimal number m such that $x^m \in \mathcal{L}_{m-1}(\{x\})$ while $x^{m-1} \notin \mathcal{L}_{m-2}(\{x\})$. We also define the multiplicative degree of \mathcal{A} to be $m(\mathcal{A}) = \max(m(x), x \in \mathcal{A})$.

If A has an identity, m(x) coincides with the degree of the minimal polynomial of x.

Combitnatorial tools

Definition

Let \mathcal{A} be an \mathbb{F} -algebra. For $x \in \mathcal{A}$ minimal multiplicative degree of x, denoted m(x) is the minimal number m such that $x^m \in \mathcal{L}_{m-1}(\{x\})$ while $x^{m-1} \notin \mathcal{L}_{m-2}(\{x\})$. We also define the multiplicative degree of \mathcal{A} to be $m(\mathcal{A}) = \max(m(x), x \in \mathcal{A})$.

If A has an identity, m(x) coincides with the degree of the minimal polynomial of x.

Proposition (K., 2024)

If I(A) > m(A), then dim $A \ge 3I(A) - 4 + \dim \mathcal{L}_0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● める◆

Results for Tsetlin libraries

Proposition (K., 2024)

The multiplicative degree of $\mathbb{C}T_n$ is 2^n .

D. Kudryavtsev (UoY)

Results for Tsetlin libraries

Proposition (K., 2024)

The multiplicative degree of $\mathbb{C}T_n$ is 2^n .

Proposition (K., 2024)

$$I(\mathbb{C}T_2)=3$$
, $I(\mathbb{C}T_3)=7$.

Thank you!